Sinorhizobium fredii USDA257, a cultivar-specific soybean symbiont, carries two copies of y4yA and y4yB, two open reading frames that are located in a region that encodes the type III protein secretion system.
نویسندگان
چکیده
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules on primitive soybean (Glycine max) cultivar Peking but fails to nodulate the improved cultivar McCall. Cultivar specificity is governed by a plasmid-borne locus, nolXBTUV. By DNA sequence analysis, we have identified two open reading frames, y4yA and y4yB, immediately downstream of nolX. Northern (RNA) blot analysis indicated that the expression of both y4yA and y4yB is inducible by isoflavonoids, and an intact copy of nolX is required. Two copies each of y4yA and y4yB are present in S. fredii USDA257, one on the sym plasmid (y4yAsp and y4yBsp), and the other on the chromosome (y4yAc and y4yBc). The cultivar-nonspecific strain USDA191 lacks y4yAc and y4yBc. Introduction of y4yAc plus y4yBc from USDA257 into USDA191 did not influence the ability of the latter strain to nodulate McCall soybean plants. Unlike nolX, the inactivation of y4yAsp and y4yBsp of USDA257 did not extend the host range of this strain. A double mutant, in which both the plasmid and chromosomal copies of y4yA and y4yB were mutated, had no observable effect on symbiotic ability of USDA257. The y4yAsp and y4yBsp mutants did not influence flavonoid-dependent extracellular protein production. Rhizobium sp. strain NGR234 and S. saheli USDA4893 both contain sequences similar to S. fredii USDA257 y4yAsp and y4yBsp; however, Bradyrhizobium spp., the traditional soybean symbionts, lack these genes.
منابع مشابه
Y4xP, an open reading frame located in a type III protein secretion system locus of Sinorhizobium fredii USDA257 and USDA191, encodes cysteine synthase.
Sinorhizobium fredii USDA257, a soybean symbiont, exports several nodulation outer proteins (Nops) into the rhizosphere. These proteins, which are exported by a type III secretion system (TTSS), have a pivotal role in host-specific nodulation. The entire TTSS of S. fredii lies within a 31-kb region that includes conserved genes that code for secretion machinery proteins, Nops, and several open ...
متن کاملNopB, a soybean cultivar-specificity protein from Sinorhizobium fredii USDA257, is a type III secreted protein.
The type III secretion system (TTSS) of plant- and animal-pathogenic bacteria is involved in translocation of virulence factors into the host cell cytosol where they modulate cellular processes. Sinorhizobium fredii USDA257 is a gram-negative soil bacterium that forms nitrogen-fixing nodules on specific soybean cultivars (Glycine max (L.) Merr.). This microsymbiont is known to secrete at least ...
متن کاملNolX of Sinorhizobium fredii USDA257, a Type III-Secreted Protein Involved in Host Range Determination, Is Localized in the Infection Threads of Cowpea (Vigna unguiculata [L.] Walp) and Soybean (Glycine max [L.] Merr.) Nodules
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules on soybean (Glycine max [L.] Merr.) in a cultivar-specific manner. This strain forms nodules on primitive soybean cultivars but fails to nodulate agronomically improved North American cultivars. Soybean cultivar specificity is regulated by the nolXWBTUV locus, which encodes part of a type III secretion system (TTSS). NolX, a soybean cul...
متن کاملDisruption of the glycine cleavage system enables Sinorhizobium fredii USDA257 to form nitrogen-fixing nodules on agronomically improved North American soybean cultivars.
The symbiosis between Sinorhizobium fredii USDA257 and soybean [Glycine max (L.) Merr.] exhibits a high degree of cultivar specificity. USDA257 nodulates primitive soybean cultivars but fails to nodulate agronomically improved cultivars such as McCall. In this study we provide evidence for the involvement of a new genetic locus that controls soybean cultivar specificity. This locus was identifi...
متن کاملExtracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257.
Several gram-negative plant and animal pathogenic bacteria have evolved a type III secretion system (TTSS) to deliver effector proteins directly into the host cell cytosol. Sinorhizobium fredii USDA257, a symbiont of soybean and many other legumes, secretes proteins called Nops (nodulation outer proteins) into the extracellular environment upon flavonoid induction. Mutation analysis and the nuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 13 9 شماره
صفحات -
تاریخ انتشار 2000